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Abstract 
 
System calls frequently and necessarily occur in user applications that interact with the underlying operating system.                
Careful evaluation must be given to these system calls and their configurations to maximize application               
performance. Specific user workloads can have significant influence on the behavior and performance of system               
calls. This paper analyzes two common abilities of the operating system: persistent media interaction and               
synchronization primitives. Various user workloads are constructed to exercise these common abilities. Performance             
metrics are collected. Results are presented along with evaluation and recommendations for future user application               
optimizations when using system calls. 
 
1 Introduction 
 
Operating systems form the backbone of modern processing environments. Millions of lines of code are responsible                
for enabling programs to easily execute on a given machine. These programs must share the machine's resources,                 
such as processor cores, volatile memory, peripheral devices, and persistent media. Virtualization and resource              
management is accomplished by the underlying operating system, which ensures the system operates correctly and               
in an efficient manner. Machine resources should be largely devoted to the user applications which mandates careful                 
system design and implementation. 

User applications must interact with the operating system to effectively use the machine's resources. This               
interaction is realized using a set of well-defined interfaces (APIs) which programs can call to instruct the operating                  
system to perform required actions. Modern systems export hundreds of  system calls to the user application which                 
each have very specific actions they perform. There are five categories of system calls: process control, file                 
manipulation, device manipulation, information maintenance and communication. By combining and mixing the            
usage of these various system calls, user applications can accomplish a wide variety of tasks on a given machine, but                    
cannot take over control of the hardware or steal data from other programs. This paper analyzes a subset of two                    
system call categories: file management and process control. 

File management describes the set of system calls which deal with the underlying file system, which is                 
responsible for storing any files the user creates in a reliable and efficient manner on the disks of the system. The                     
user application cannot interact directly with the persistent storage media, therefore generic operations are exposed               
via the operating system's APIs. Actions that can be invoked from user applications include creating a new file,                  
opening and closing a file, reading and writing to a file, and other auxiliary actions such as seeking through files and                     
renaming them. By using this agreed upon interface, operating systems can abstract away the mechanics of the                 
actual file system, enabling applications to easily manipulate and persistent data. 

Process control refers to the operating systems ability to run programs at various times while maintaining                
each program's illusion that full machine capabilities are available. The operating system will tend to swap out tasks                  
to provide fair usage of the physical processing resources. Modern hardware systems often have multiple physical                
processing cores which can be used to run different programs in parallel, or can be exploited by a single program for                     
increased processing throughput. When a single program creates multiple threads of execution, careful thought must               
be placed on how these threads interact and share common data to ensure program correctness while simultaneously                 
realizing the potential performance gains. The operating system provides various synchronization primitives which             
the application can use to maintain data consistency and algorithmic correctness. 

 



 

1.1 Problems 
 
Persistent media interaction can be a major source of performance problems for many data-intensive applications.               
Many modern operating systems use a buffering layer between the user application and the underlying filesystem,                
which allows for clever techniques to increase I/O throughput and reduce perceived latency, while also hiding                
alignment requirements from users. While the buffered I/O technique is better in the common case, it can lead to                   
lower performance for some applications with specific workload characteristics. This motivates operating systems to              
include optional modes which disable the buffering layer and permit direct access to the underlying media. Direct                 
access certainly has potential performance gains, but when used improperly, can severely decrease performance              
compared to the buffered I/O. The following sections explore this further. 

Maximum processing throughput naturally demands concurrency and full utilization of the available            
processing resources. Critical sections of code, where only a single thread can execute at a time, are common in high                    
performance concurrent applications. Modern operating systems provide simple locking primitives to enforce the             
single thread constraint. Two common lock types are the spin lock and mutex. Each lock type creates a barrier to                    
critical sections, thus maintaining program correctness. However, spin locks and mutexes are internally implemented              
very differently, leading to significant performance differences in various common workloads. The following             
sections explore this further. 
 
1.2 Approach 
 
Multiple workloads are designed to exhibit the differing performance observed between buffered and direct I/O, as                
well as spinlocks and mutexes. These workloads are benchmarked on a typical user system and performance metrics                 
are collected for analysis. Care is given to ensure the resulting data and conclusions are repeatable. When possible,                  
workloads are designed to represent a wide range of use cases so more widely encompassing conclusions can be                  
made. The rest of this paper describes the various experiments performed as well as the results. Conclusions are                  
made which highlight the major observations which can be utilized when developing user applications. 
 
2 Experiments 
 
All experiments are performed on a consumer desktop PC running Linux 4.4.8. The PC has a quad-core Intel                  
i7-2600K processor with hyper-threading to enable eight hardware threads of execution. System memory available is               
24GB. The persistent media is a 1TB hard disk drive (HDD) from Western Digital with 7200 RPM rotational speed                   
and 32MB cache. The filesystem is ext4. 
 
2.1 Local File System 
 
Performance of the local file system is critical to data-intensive applications. Some workloads implement caching at                
the application level, while others depend on file system caching techniques for high performance. These differences                
should be apparent in the ways in which the applications configure the system calls. For application layer caching,                  
direct I/O can offer improved performance. By default, buffering is used which normally leads to much better                 
performance, however data must be copied twice (once to the file system buffer, once to the user buffer). This                   
overhead is not always an issue, but depends on the workload characteristics, as well as the maximum throughput of                   
the underlying persistent media technology. For example, the relative speeds of in-memory copies versus hard disk                
drive random access throughput is hardly comparable; the HDD dominates. When faster devices are used for                
persistent media, such as solid state drives (SSDs) or even non-volatile memory (NVM), the extra copy overhead                 
can start be become a significant performance bottleneck. 
 

 



 

2.1.1 Workloads 
 
Multiple workloads are created to examine different use cases and interactions with the file system and underlying                 
disk. Workload #1 is created to evaluate sequential append performance. It is expected that for relatively small                 
writes, the buffering layer will combine these sequential writes and issue larger block writes to increase throughput.                 
Workload #2 is created to evaluate random read performance. It is expected that randomly reading via direct I/O will                   
be slightly faster, as data is only copied once directly to the user buffer, not twice through the file system buffer.                     
Workload #3 is created to evaluate single block overwrite performance. It is expected that direct I/O will actually                  
outperform buffered I/O because direct copying to disk is used, and a flush of cache is performed between block                   
writes. Workload #4 is created similar to workload #3, but reads the block directly after writing to it. It is expected                     
that direct I/O will again be faster because of less redundant copying. See Listing 1 for implementations. 
 

Workload #1: 
Sequential Appends 

 
fd = open("file",  

          TEST_FLAGS) 

 

// PROFILE START 

 

for 1 to 256: 

 write(fd, buf, size) 

 

syncfs(fd) 

 

close(fs) 

 

// PROFILE END 

Workload #2: 
Random Reads 

 

fd = open("file", 

          O_DIRECT) 

 

for 1 to 16MB: 

  write(fd, "a", 1) 

 

close(fd) 

 

fd = open("file",  

          TEST_FLAGS) 

 

// PROFILE START 

 

for 1 to numblks: 

  lseek(fd, rand()) 

  read(fd, buf, size) 

 

// PROFILE END 

Workload #3: 
Single Block Overwrite 

 

fd = open("file",  

          TEST_FLAGS) 

 

// PROFILE START 

 

for 1 to 64: 

  lseek(fd, 0) 

  write(fd, buf, size) 

  syncfs(fs) 

 

close(fs) 

 

// PROFILE END 

Workload #4: 
Single Block R/W 

 

fd = open("file", 

          TEST_FLAGS) 

 

// PROFILE START 

 

for 1 to 64: 

  lseek(fd, 0) 

  write(fd, bufw, size) 

  syncfs(fd) 

  read(fd, bufr, size) 

 

close(fd) 

 

// PROFILE END 

Listing 1: Workload implementation for buffered vs. direct I/O comparison. Red highlight indicates profiling section. 
 
2.1.2 Results 
 
Sequential Appends Figure 1 shows the throughput of the sequential appends as a function of block size. As block                   
size increases, throughput also increases up to ~1MB block sizes. At this point, disk throughput is mostly saturated,                  
so increasing block size does not greatly influence performance. Buffered I/O is clearly faster than direct I/O for                  
block sizes ranging from 4KB to 2MB. For block sizes larger than 2MB, it is unclear which I/O method is faster;                     
they are approximately equivalent. 
Random Reads Figure 2 shows the throughput of random reads as a function of block size. It was expected that                    
direct I/O would have slight performance advantages over buffered I/O, but the data show that the two methods are                   
essentially equivalent. As block size increases, so does throughput. 
Single Block Overwrite Figure 3 shows the relative performance of direct to buffered I/O for overwriting a single                  
block as a function of block size. A value of 1.0 indicates both direct and buffered I/O have the same performance.                     
For small block sizes, 4KB to 16KB, direct I/O achieves higher throughput. At 4KB block size, direct I/O is 25%                    
faster than buffered I/O. As block size increases, performance becomes similar. 
Single Block Read/Write Figure 4 shows I/O operations per second (IOPS) for reading and writing to one file block                   
as a function of block size. Buffered I/O achieves slightly more IOPS than direct I/O, but the performance gap                   
decreases as block size increases. 

 



 

Figure 1: 256 sequential appends to file. 
Data averaged over 50 runs. 

Figure 2: Randomly reading blocks from 16MB file. 
Data averaged over 50 runs. 

Figure 3: Overwriting single block 64 times. 
Data averaged over 10 runs. 

Figure 4: Single block write/read 64 times. 
Data averaged over 10 runs. 

 
2.1.3 Evaluation 
 
For three out of the four tested workloads, buffered I/O performs at least as well as direct I/O. While the buffering                     
layer requires double copying of all data, the throughput rates of hard disk drives are simply too small to notice this                     
extra copying time, especially at small block sizes. At small block sizes, the file system is more performant if it                    
combines reads or writes into larger requests. This is a result of the sheer increase in throughput for sequential disk                    
accesses compared to random accesses. 

The single workload that performed better for direct I/O than buffered I/O overwrote a single block many                 
times. Bypassing the buffer cache and accessing the disk directly is beneficial in this instance because a flush call                   
was made between every write. This forcibly slows down the buffering system and makes it perform like direct I/O,                   
but with an additional copy for all data. Essentially, this is forcing bad performance onto the buffered I/O                  
methodology and allows direct I/O to compete in terms of throughput. 
 
2.2 Concurrency 
 
While many different primitives exist to help applications manage concurrency, locks remain an easy-to-use              
solution. When one thread "holds" a lock, other threads are prevented from also holding the lock. Spinlocks are                  
implemented such that the thread that fails to acquire the lock continually retries to get it. This wastes CPU time, but                     
can result in better performance. Mutexes behave similarly to spinlocks at first, but after a few failed acquisitions,                  
the thread is put to sleep until the lock is available. This allows the CPU to be used by other threads. 

 



 

2.2.1 Workload 
 
The performance of the locking mechanisms depends on multiple factors. In this paper, attention is given to the time                   
spent in the critical section of code, as well as the number of threads attempting to acquire the lock. A simple                     
workload is constructed which creates an array of threads to do work. This work consists of 100 accesses of the                    
critical section. At run time, a parameter is passed to the program to set the duration a thread spends in the critical                      
section. By sweeping both the number of threads and the duration of time spent in the critical section, interesting                   
results appear. See Listing 2 for implementation details. 
 

critical() { 

  lock(&lock) 

 

  for 1 to WORK: 

    NOP 

 

  unlock(&lock) 

} 

 

void *work(void *arg) { 

  count = 1 

  while count <= 100: 

    critical() 

    count++ 

} 

pthread_t threads[NUM] 

lock_t lock 

 

main() { 

  init_lock(&lock) 

 

   // PROFILE START 

 

  for i 1 to NUM: 

    pthread_create(&threads[i], NULL, work) 

 

  for i 1 to NUM: 

    pthread_join(threads[i], NULL) 

 

   // PROFILE END 

} 

Listing 2: Workload implementation for spinlock vs. mutex comparison. 
 
2.2.2 Results 
 
Figure 5 shows a plot of relative performance of the spinlock to the mutex. Each cell in the plot contains a number 
which is the ratio of performance. A value of 1.0 indicates both the spinlock and mutex have identical performance, 
while a value of 2.0 indicates the spinlock version of the workload completed its task twice as fast as the mutex 
version. A wide range of time spent in the critical section was evaluated, ranging from about one instruction to about 
one million instructions. For each of these values, a range of thread counts were evaluated, ranging from one thread 
to 100 threads. Coloring is given to the plot to show areas of general performance. Green indicates values greater 
than one, meaning spinlocks perform better. Red indicates values less than one, meaning mutexes perform better. 
 
2.2.3 Evaluation 
 
The wide range of thread count and critical instruction count leads to interesting data which can help inform the                   
decision of when to use spinlocks versus mutexes. General knowledge is that spinlocks are inefficient and waste                 
CPU time, while mutexes allow efficient allocation of processing time, therefore should always be used. Figure 5                 
clearly shows that there is much more nuance than this initial idea. 

For program thread counts less than or equal to the number of threads available on the given machine, spin                   
locks  always perform as well or better than mutexes, in some cases up to twice as well. This can be explained                     
because mutexes must put a thread to sleep and then later reawaken it, which is a very expensive process. As long as                      
there are not starved threads which require the CPU, having a thread spin on a lock and simply wait for it to become                       
free leads to significantly higher performance. Naturally, as the number of threads is increased to more than the                  
physical hardware supports, the threads must share the CPU. Programs that have critical sections with more than 1k                  
instructions and more than the hardware allowed number of threads show that mutexes allow much higher                

 



 

performance. This is because the blocked thread is put to sleep, which enables another thread to do work. 
Finally, it can be seen that for workloads with more than eight threads but less than 1k critical section                   

instructions, spinlocks perform very well. This could suggest that the operating system must run approximately 1k                
instructions to put a thread to sleep and wake it up. Therefore, just keeping the thread awake and spinning is better                     
for performance. 
 

 
Figure 5: Spinlock vs. mutex relative performance. 

Values >1.0 indicate spinlock workload is faster than mutex workload 
(e.g. 2.0 means workload throughput using spinlock is 2x faster than mutex). 

Values are averaged over multiple runs. 
3 Conclusions 
 
Careful study of various workloads for file system operations as well as thread synchronization is performed. It is                  
shown that for accessing persistent media such as hard disks, using buffered I/O generally leads to better                 
performance. This is because the file system composes many small accesses into larger ones to exploit fast                 
sequential accesses. Only for very specific workloads, when small amounts of data are flushed constantly to disk,                 
does direct I/O offer any advantages over buffered I/O. Application developers must carefully study their workloads                
to determine if buffered or direct I/O should be used. 

Both spinlocks and mutexes are tested in a wide range of combinations of thread count and critical section                  
instructions. It is shown that for workloads with less than or equal number of threads than the physical hardware                   
allows, using spinlocks can lead to higher performance (up to 2x). However, when critical section instruction count                 
increases to above five thousand instructions and thread count rises above hardware supported amount, mutexes will                
perform better, as threads are put to sleep to make way for other threads to effectively use the CPU. Users must take                      
into consideration the number of cycles in an application's critical section to determine appropriate lock type. 

 


